Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35054541

RESUMO

Carbon dioxide (CO2) capture has become of great importance for industrial processes due to the adverse environmental effects of gas emissions. Mixed matrix membranes (MMMs) have been studied as an alternative to traditional technologies, especially due to their potential to overcome the practical limitations of conventional polymeric and inorganic membranes. In this work, the effect of using different ionic liquids (ILs) with the stable metal-organic framework (MOF) ZIF-8 was evaluated. Several IL@ZIF-8 composites and IL@ZIF-8 MMMs were prepared to improve the selective CO2 sorption and permeation over other gases such as methane (CH4) and nitrogen (N2). Different ILs and two distinct loadings were prepared to study not only the effect of IL concentration, but also the impact of the IL structure and affinity towards a specific gas mixture separation. Single gas sorption studies showed an improvement in CO2/CH4 and CO2/N2 selectivities, compared with the ones for the pristine ZIF-8, increasing with IL loading. In addition, the prepared IL@ZIF-8 MMMs showed improved CO2 selective behavior and mechanical strength with respect to ZIF-8 MMMs, with a strong dependence on the intrinsic IL CO2 selectivity. Therefore, the selection of high affinity ILs can lead to the improvement of CO2 selective separation for IL@ZIF-8 MMMs.

2.
Front Chem ; 8: 590191, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304882

RESUMO

Global warming is arguably the biggest scientific challenge of the twenty-first century and its environmental consequences are already noticeable. To mitigate the emissions of greenhouse gases, particularly of CO2, there is an urgent need to design materials with improved adsorbent properties. Five different magnetic ionic liquids were impregnated into the metal-organic framework ZIF-8. The composites were produced by a direct-contact method, and their performance as sorbents for gas separation applications was studied. The impact of the ionic liquid anion on the sorption capacity and ideal CO2/CH4 and CO2/N2 selectivities were studied, focusing on understanding the influence of metal atom and ligand on the adsorbent properties. Reproducible methodology, along with rigorous characterization, were established to assess the impact of the ionic liquid on the performance of the composite materials. Results show that the ionic liquid was well-impregnated, and the ZIF-8 structure was maintained after ionic liquid impregnation. The produced composites were of microporous nature and were thermally stable. CO2, CH4, and N2 adsorption-desorption isotherms were obtained at 303 K and between 0 and 16 bar. The adsorption-desorption data of the composites were compared with that obtained for original ZIF-8. The general trend in composites is that the increased gas uptake per available pore volume compensates the pore volume loss. Adsorption data per unit mass showed that composites have reversible sorption, but inferior gas uptake at all pressure ranges. This is due to the observed total pore volume loss by the ionic liquid pore occupation/blockage. In most cases, composites showed superior selectivity performance at all pressure range. In particular, the composite [C4MIM]2[MnCl4]@ZIF-8 shows a different low-pressure selectivity trend from the original MOF, with a 33% increase in the CO2/N2 selectivity at 1 bar and 19% increase in the CO2/CH4 selectivity at 10 bar. This material shows potential for use in a post-combustion CO2 capture application that can contribute to greenhouse gas mitigation.

3.
Waste Manag ; 105: 170-179, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070820

RESUMO

Porous carbons from digestate-derived hydrochar were produced, characterized and their performance to reclaim phosphate from water was evaluated as a preliminary approach to demonstrate their practical application. In a first step, the digestate was converted into hydrochars through hydrothermal carbonization by using two different pH conditions: 8.3 (native conditions) and 3.0 (addition of H2SO4). The resulting hydrochars did not present significant differences. Consecutively, the hydrochars were activated with KOH to produce activated carbons with enhanced textural properties. The resulting porous carbons presented marked differences: the AC native presented a lower ash content (20.3 wt%) and a higher surface area (SBET = 1106 m2/g) when compared with the AC-H2SO4 (ash content = 43.7 wt% SBET = 503 m2/g). Phosphorus, as phosphate, is a resource present in significative amount in wastewater, causing serious problems of eutrophication. Therefore, the performance of the porous carbons samples to recover phosphate - P(PO43-) - from water was evaluated through exploitation assays that included kinetic studies. The lumped model presented a good fitting to the kinetic data and the obtained uptake capacities were the same for both carbons, 12 mg P(PO43-)/g carbon. Despite the poorer textural properties of AC-H2SO4, this carbon was richer in Ca, Al, Fe, K, and Mg cations which promoted the formation of mineral complexes with phosphate anions. The results obtained in this work are promising for the future development of P(PO43-) enriched carbons that can be used thereafter as biofertilizers in soil amendment applications.


Assuntos
Biocombustíveis , Carvão Vegetal , Cinética , Porosidade , Solo
4.
J Environ Manage ; 249: 109351, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31419673

RESUMO

Maize Cob Waste (MCW) is available worldwide in high amounts, as maize is the most produced cereal in the world. MCW is generally left in the crop fields, but due to its low biodegradability it has a negligible impact in soil fertility. Moreover, MCW can be used as substrate to balance the C/N ratio during the Anaerobic co-Digestion (AcoD) with other biodegradable substrates, and is an excellent precursor for the production of Activated Carbons (ACs). In this context, a biorefinery is theoretically discussed in the present review, based on the idea that MCW, after proper pre-treatment is valorised as precursor of ACs and as co-substrate in AcoD for biomethane generation. This paper provides an overview on different scientific and technological aspects that can be involved in the development of the proposed biorefinery; the major topics considered in this work are the following ones: (i) the most suitable pre-treatments of MCW prior to AcoD; (ii) AcoD process with regard to the critical parameters resulting from MCW pre-treatments; (iii) production of ACs using MCW as precursor, with the aim to use these ACs in biogas conditioning (H2S removal) and upgrading (biomethane production), and (iv) an overview on biogas upgrading technologies.


Assuntos
Biocombustíveis , Zea mays , Anaerobiose , Reatores Biológicos , Carvão Vegetal , Metano
5.
J Nanosci Nanotechnol ; 10(4): 2537-46, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20355459

RESUMO

We have carried out configurational-bias Grand Canonical Monte Carlo simulations of propane and propylene adsorption onto homogeneous bundles of single-walled carbon nanotubes, at ambient temperature (T = 298.15 K) and over a pressure range of 0.1 bar < or = p < 10.4 bar. The distinct contributions from external sites (grooves and external surface) and endohedral volume (inter- and intra-tubular) are individually addressed for bundles with nanotube diameters (D) within the range 11.0 A < D < or = 18.1 A. The different contributions from the various adsorption sites are interpreted from a molecular perspective, which takes into account both the skeletal geometry of the bundle and individual tube diameter. The resulting microscopic picture is then related to a macroscopic measurable isotherm by modeling the nanotube bundles, as a function of a characteristic hydraulic diameter (Dh) over the range 100 A < or = Dh < or = 310 A. A previously unobserved anisotropic behavior of the adsorption isotherm for the peripheral surface of the bundles as a function of hydraulic diameter is reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...